博客
关于我
最原始的GAN-我开始慢慢的懂GAN了
阅读量:720 次
发布时间:2019-03-21

本文共 668 字,大约阅读时间需要 2 分钟。

生成器在GAN中生成虚假图片的过程如下:

  • 噪声输入:生成器首先接受一批随机噪声,这些噪声来自正态分布,形状为(batch_size, 100)。在代码中,batch_size通常设置为128,这意味着每次生成128张独立的虚假图片。

  • 生成过程:噪声数据通过一个全连接的生成器网络转换。生成器网络由多个隐藏层组成,每层都有激活函数(如LeakyReLU),以模拟真实神经网络的非线性变换。最终,生成器将噪声数据转换为形状为(batch_size,784)的虚假数字图片。784对应于28x28的尺寸,即一张标准的手写数字图像大小。

  • 输出处理:生成器输出的是虚假图片的数字形式,通常是一个一维的数组。为了可视化,需要将这个一维数组转换为二维的图片矩阵。例如,将784维的数据按照行转换为28x28的矩阵,然后使用Matplotlib等库进行显示。

  • 批量大小调整:为了更直观地查看生成的虚假图片,可以将批量大小设置为1。这使得fake_images变为一个784维的数据点,随后将其转换为28x28的二维数组,便于使用imshow函数显示图像。

  • 真实图片与虚假图片对比:真实图片通常也是从训练集中随机抽取一批,形状与虚假图片一致(如(128,784))。这意味着每次生成的虚假图片和真实图片都是128张独立的28x28图片,方便对比生成器的性能进步。

  • 总结:生成器通过将噪声数据转换为一维数字后,再通过激活函数和隐藏层生成符合原始数据分布的一维数字,最终的虚假图片通过特定的转换和显示函数呈现为解析后的数字图像,从而实现了生成虚假图片的功能。

    转载地址:http://uuoez.baihongyu.com/

    你可能感兴趣的文章
    NN&DL4.8 What does this have to do with the brain?
    查看>>
    No 'Access-Control-Allow-Origin' header is present on the requested resource.
    查看>>
    No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
    查看>>
    No module named cv2
    查看>>
    No module named tensorboard.main在安装tensorboardX的时候遇到的问题
    查看>>
    No qualifying bean of type XXX found for dependency XXX.
    查看>>
    No resource identifier found for attribute 'srcCompat' in package的解决办法
    查看>>
    Node.js 文件系统的各种用法和常见场景
    查看>>
    node.js 配置首页打开页面
    查看>>
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    nodejs libararies
    查看>>
    nodejs-mime类型
    查看>>
    nodejs中Express 路由统一设置缓存的小技巧
    查看>>
    Node入门之创建第一个HelloNode
    查看>>
    NotImplementedError: Cannot copy out of meta tensor; no data! Please use torch.nn.Module.to_empty()
    查看>>
    npm run build 失败Compiler server unexpectedly exited with code: null and signal: SIGBUS
    查看>>
    npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
    查看>>
    npm和yarn的使用对比
    查看>>
    npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
    查看>>